
Property-Directed Verification and Robustness
Certification of Recurrent Neural Networks?

Igor Khmelnitskya,b, Daniel Neiderc, Rajarshi Royc, Xuan Xiec,
Benoît Barbotd, Benedikt Bolliga, Alain Finkela,g, Serge Haddada,b,

Martin Leuckere, and Lina Yea,b,f

a Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France
b Inria, France

c Max Planck Institute for Software Systems, Kaiserslautern, Germany
d Université Paris-Est Créteil, France

e Institute for Software Engineering and Programming Languages, Universität zu
Lübeck, Germany

f CentraleSupélec, Université Paris-Saclay, France
g Institut Universitaire de France, France

Abstract. This paper presents a property-directed approach to verifying
recurrent neural networks (RNNs). To this end, we learn a deterministic
finite automaton as a surrogate model from a given RNN using active
automata learning. This model may then be analyzed usingmodel checking
as a verification technique. The term property-directed reflects the idea
that our procedure is guided and controlled by the given property rather
than performing the two steps separately. We show that this not only
allows us to discover small counterexamples fast, but also to generalize
them by pumping towards faulty flows hinting at the underlying error
in the RNN. We also show that our method can be efficiently used for
adversarial robustness certification of RNNs.

1 Introduction

Recurrent neural networks (RNNs) are a state-of-the-art tool to represent and
learn sequence-based models. They have applications in time-series prediction,
sentiment analysis, and many more. In particular, they are increasingly used in
safety-critical applications and act, for example, as controllers in cyber-physical
systems [1]. Thus, there is a growing need for formal verification. However,
research in this domain is only at the beginning. While formal-methods based
techniques such as model checking [4] have been successfully used in practice and
reached a certain level of industrial acceptance, a transfer to machine-learning
algorithms has yet to take place. We apply it on machine-learning artifacts rather
than on the algorithm.

? The first four authors contributed equally, the remaining authors are ordered al-
phabetically. This work was partly supported by the PHC PROCOPE 2020 project
LeaRNNify (number 44707TK), funded by DAAD and Campus France.

An emerging research stream aims at extracting, from RNNs, state-based
formalisms such as finite automata [3, 16,17,20,21,25]. Finite automata turned
out to be useful for understanding and analyzing all kinds of systems using
testing or model checking. In the field of formal verification, it has proven to be
beneficial to run the extraction and verification process simultaneously. Moreover,
the state space of RNNs tends to be prohibitively large, or even infinite, and
so do incremental abstractions thereof. Motivated by these facts, we propose
an intertwined approach to verifying RNNs, where, in an incremental fashion,
grammatical inference and model checking go hand-in-hand. Our approach is
inspired by black-box checking [22], which exploits the property to be verified
during the verification process. Our procedure can be used to find misclassified
examples or to verify a system that the given RNN controls.

Property-directed verification. Let us give a glimpse of our method. We consider
an RNN R as a binary classifier of finite sequences over a finite alphabet Σ. In
other words, R represents the set of strings that are classified as positive. We
denote this set by L(R) and call it the language of R. Note that L(R) ⊆ Σ∗. We
would like to know whether R is compatible with a given specification A, written
R |= A. Here, we assume that A is given as a (deterministic) finite automaton.
Finite automata are algorithmically feasible, albeit having a reasonable expressive
power: many abstract specification languages such as temporal logics or regular
expressions can be compiled into finite automata [10].

But what does R |= A actually mean? In fact, there are various options. If A
provides a complete characterization of the sequences that are to be classified as
positive, then |= refers to language equivalence, i.e., L(R) = L(A). Note that this
would imply that L(R) is supposed to be a regular language, which may rarely be
the case in practice. Therefore, we will focus on checking inclusion L(R) ⊆ L(A),
which is more versatile as we explain next.

Suppose N is a finite automaton representing a negative specification, i.e., R
must classify words in L(N) as negative at any cost. In other words, R does not
produce false positives. This amounts to checking that L(R) ⊆ L(N) where N is
the “complement automaton” of N . For instance, assume that R is supposed to
recognize valid XML documents over a finite predefined set of tags. Seen as a set
of strings, this is not a regular language. However, we can still check whether
L(R) only contains words where every opening tag <tag-name> is eventually
followed by a closing tag </tag-name> (while the number of opening and the
number of closing tags may differ). As negative specification, we can then take
an automaton N accepting the corresponding regular set of strings. For example,
<book><author></author><author></book> ∈ L(N), since the second occurrence
of <author> is not followed by some </author> anymore. On the other hand, we
have <book><author><author></author></book> ∈ L(N), as <book> and <author>
are always eventually followed by their closing counterpart.

Symmetrically, suppose P is a finite automaton representing a positive specifi-
cation so that we can find false negative classifications: If P represents the words
that R must classify as positive, we would like to know whether L(P) ⊆ L(R). Our

2

procedure can be run using the complement of P as specification and inverting
the outputs of R, i.e., we check, equivalently, L(R) ⊆ L(P).

An important instance of this setting is adversarial robustness certification,
which measures a neural network’s resilience against adversarial examples. Given
a (regular) set of words L classified as positive by the given RNN, the RNN is
robust wrt. L if slight modifications in a word from L do not alter the RNN’s
judgement. This notion actually relies on a distance function. Then, P is the set
of words whose distance to a word in L is bounded by a predefined threshold,
which is regular for several popular distances such as the Hamming or Levenshtein
distance. Similarly, we can also check whether the neighborhood of a regular set
of words preserves a negative classification.

So, in all these cases, we are faced with the question of whether the language
of an RNN R is contained in the (regular) language of a finite automaton A.
Our approach to this problem relies on black-box checking [22], which has been
designed as a combination of model checking and testing in order to verify
finite-state systems and is based on Angluin’s L∗ learning algorithm [2]. L∗
produces a sequel of hypothesis automata based on queries to R. Every such
hypothesis H may already share some structural properties with R. So, instead of
checking conformance of H with R, it is worthwhile to first check L(H) ⊆ L(A)
using classical model-checking algorithms. If the answer is affirmative, we apply
statistical model checking to check L(R) ⊆ L(H) to confirm the result. Otherwise,
a counterexample is exploited to refine H, starting a new cycle in L∗. Just
like in black-box checking, our experimental results suggest that the process of
interweaving automata learning and model checking is beneficial in the verification
of RNNs and offers advantages over more obvious approaches such as (pure)
statistical model checking or running automata extraction and model checking in
sequence. A further key advantage of our approach is that, unlike in statistical
model checking, we often find a family of counterexamples, in terms of loops in
the hypothesis automaton, which testify conceptual problems of the given RNN.

Note that, though we only cover the case of binary classifiers, our framework
is in principle applicable to multiple labels using one-vs-all classification.

Related Work. Mayr and Yovine describe an adaptation of the PAC variant of
Angluin’s L* algorithm that can be applied to neural networks [17]. As L* is not
guaranteed to terminate when facing non-regular languages, the authors impose
a bound on the number of states of the hypotheses and on the length of the
words for membership queries. In [16,18], Mayr et al. propose on-the-fly property
checking where one learns an automaton approximating the intersection of the
RNN language and the complement of the property to be verified. Like the RNN,
the property is considered as a black box, only decidability of the word problem
is required. Therefore, the approach is suitable for non-regular specifications.

Weiss et al. introduce a different technique to extract finite automata from
RNNs [25]. It also relies on Angluin’s L* but, moreover, uses an orthogonal
abstraction of the given RNN to perform equivalence checks between them.

The paper [1] studies formal verification of systems where an RNN-based
agent interacts with a linearly definable environment. The verification procedure

3

proceeds by a reduction to feed-forward neural networks (FFNNs). It is complete
and fully automatic. This is at the expense of the expressive power of the
specification language, which is restricted to properties that only depend on
bounded prefixes of the system’s executions. In our approach, we do not restrict
the kind of regular property to verify. The work [13] also reduces the verification of
RNNs to FFNN verification. To do so, the authors calculate inductive invariants,
thereby avoiding a blowup in the network size. The effectiveness of their approach
is demonstrated on audio signal systems. Like in [1], a time interval is imposed
in which a given property is verified.

For adversarial robustness certification, Ryou et al. [23] compute a convex
relaxation of the non-linear operations found in the recurrent cells for certifying
the robustness of RNNs. The authors show the effectiveness of their approach
in speech recognition. Besides, MARBLE [8] builds a probabilistic model to
quantize the robustness of RNNs. However, these approaches are white-box based
and demand the full structure and information of neural networks. Instead, our
approach is based on learning with black-box checking.

Elboher et al. present a counter-example guided verification framework whose
workflow shares similarities with our property-guided verification [9]. However,
their approach addresses FFNNs rather than RNNs. For recent progress in the
area of safety and robustness verification of deep neural networks, see [15].
Outline. In Section 2, we recall basic notions such as RNNs and finite automata.
Section 3 describes two basic algorithms for the verification of RNNs, before we
present property-directed verification in Section 4. How to handle adversarial
robustness certification is discussed in Section 5. The experimental evaluation
and a thorough discussion can be found in Section 6.

2 Preliminaries

In this section, we provide definitions of basic concepts such as languages, recurrent
neural networks, finite automata, and Angluin’s L* algorithm.
Words and Languages. Let Σ be an alphabet, i.e., a nonempty finite set, whose
elements are called letters. A (finite) word w over Σ is a sequence a1 . . . an of
letters ai ∈ Σ. The length of w is defined as |w| = n. The unique word of length
0 is called the empty word and denoted by λ. We let Σ∗ refer to the set of all
words over Σ. Any set L ⊆ Σ∗ is called a language (over Σ). Its complement is
L = {w ∈ Σ∗ | w 6∈ L}. For two languages L1, L2 ⊆ Σ∗, we let L1 \L2 = L1 ∩L2.
The symmetric difference of L1 and L2 is defined as L1⊕L2 = (L1\L2)∪(L2\L1).
Probability Distributions. In order to sample words over Σ, we assume a prob-
ability distribution (pa)a∈Σ on Σ (by default, we pick the uniform distribu-
tion) and a “termination” probability p ∈ (0, 1]. Together, they determine
a natural probability distribution on Σ∗ given, for w = a1 . . . an ∈ Σ∗, by
Pr(w) = pa1 · . . . · pan · (1− p)n · p. According to the geometric distribution, the
expected length of a word is (1/p)−1, with a variance of (1−p)/p2. Let 0 < ε < 1
be an error parameter and L1, L2 ⊆ Σ∗ be languages. We call L1 ε-approximately
correct wrt. L2 if Pr(L1 \ L2) =

∑
w∈L1\L2

Pr(w) < ε.

4

Finite Automata and Recurrent Neural Networks. We employ two kinds of
language acceptors: finite automata and recurrent neural networks.

Recurrent neural networks (RNNs) are a generic term for artificial neural
networks that process sequential data. They are particularly suitable for classifying
sequences of varying length, which is essential in domains such as natural language
processing (NLP) or time-series prediction. For the purposes of this paper, it is
sufficient to think of an RNN R as an effective function R : Σ∗ → {0, 1}, which
determines its language as L(R) = {w ∈ Σ∗ | R(w) = 1}. Its complement R is
defined by R(w) = 1−R(w) for all w ∈ Σ∗. There are several ways to effectively
represent R. Among the most popular architectures are (simple) Elman RNNs,
long short-term memory (LSTM) [11], and GRUs [6]. Their expressive power
depends on the exact architecture, but generally goes beyond the power of finite
automata, i.e., the class of regular languages.

A deterministic finite automaton (DFA) over Σ is a tuple A = (Q, δ, q0, F)
where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of
final states, and δ : Q×Σ → Q is the transition function. We assume familiarity
with basic automata theory and leave it at mentioning that the language L(A)
of A is defined as the set of words from Σ∗ that δ guides into a final state when
starting in q0. That is, for the complement DFA A = (Q, δ, q0, Q \ F), we get
L(A) = L(A) = Σ∗ \L(A). It is well-known that high-level specifications such as
LTL formulas over finite words [10] or regular expressions can be compiled into
corresponding DFAs.

We sometimes use RNNs and DFAs synonymous for their respective languages.
For example, we say that R is ε-approximately correct wrt. A if L(R) is ε-
approximately correct wrt. L(A).

Angluin’s Algorithm. Angluin introduced L∗, a classical instance of a learning
algorithm in the presence of a minimally adequate teacher (MAT) [2]. We do not
detail the algorithm here but only define the interfaces that we need to embed
L∗ into our framework. Given any regular language L ⊆ Σ∗, the algorithm L∗

eventually outputs the unique minimal DFA H such that L(H) = L. The crux is
that, while Σ is given, L is a priori unknown and can only be accessed through
membership queries (MQ) and equivalence queries (EQ):

(MQ) w
?
∈ L for a given word w ∈ Σ∗. Thus, the answer is either yes or no.

(EQ) L(H) ?
= L for a given DFA H. Again, the answer is either yes or no. If

the answer is no, one also gets a counterexample word from the symmetric
difference L(H)⊕ L.

Essentially, L∗ asks MQs until it considers that it has a consistent data set to come
up with a hypothesis DFA H, which then undergoes an EQ. If the latter succeeds,
then the algorithm stops. Otherwise, the counterexample and possibly more
membership queries are used to refine the hypothesis. The algorithm provides the
following guarantee: If MQs and EQs are answered according to a given regular

5

Algorithm 1: SMC
Input: RNN R, DFA A, ε, γ ∈ (0, 1)

1 for i = 1, . . . , log(2/γ)/(2ε2) do
2 w ← sampleWord()
3 if w ∈ L(R) \ L(A) then
4 return “Counterexample w”
5 end
6 return “Property satisfied”

Algorithm 2: AAMC
Input: RNN R and DFA A

1 AR ← Approximation(R)
2 if ∃w ∈ L(AR) \ L(A) then
3 return “Counterexample w”
4 else return “Property satisfied”

Algorithm 3: PDV
Input: RNN R, DFA A, ε, γ ∈ (0, 1)

1 Initialize L∗

2 while true do
3 H ← hypothesis provided by L∗

4 Check L(H) ⊆ L(A)
5 if L(H) ⊆ L(A) then
6 Check L(R) ⊆ L(H) using Alg. 1
7 if L(R) ⊆ L(H) then
8 return “Property satisfied”
9 else Feed counterexample to L∗

10 else
11 Let w ∈ L(H) \ L(A)
12 if w ∈ L(R) then
13 return “Counterexample w”
14 else Feed counterexample w to L∗

15 end
16 end

language L ⊆ Σ∗, then the algorithm eventually outputs, after polynomially1

many steps, the unique minimal DFA H such that L(H) = L.

3 Verification Approaches

Before we present (in Section 4) our method of verifying RNNs, we here describe
two simple approaches. The experiments will later compare all three algorithms
wrt. their performance.

Statistical Model Checking (SMC). One obvious approach for checking whether
the RNN under test R satisfies a given specification A, i.e., to check whether
L(R) ⊆ L(A), is by a form of random testing. The idea is to generate a finite test
suite T ⊂ Σ∗ and to check, for each w ∈ T , whether for w ∈ L(R) also w ∈ L(A)
holds. If not, each such w is a counterexample. On the other hand, if none of the
words turns out to be a counterexample, the property holds on R with a certain
error probability. The algorithm is sketched as Algorithm 1.

Note that the test suite is sampled according to a probability distribution on
Σ∗. Recall that our choice depends on two parameters: a probability distribution
on Σ and a “termination” probability, both are described in Section 2.

Theorem 1 (Correctness of SMC). If Algorithm 1, with ε, γ ∈ (0, 1), termi-
nates with “Counterexample w”, then w is mistakenly classified by R as positive.
If it terminates with “Property satisfied”, then R is ε-approximately correct wrt.
A with probability at least 1− γ.
1 in the index of the right congruence associated with L and in the size of the longest
counterexample obtained as a reply to an EQ

6

While the approach works in principle, it has several drawbacks for its practical
application. The size of the test suite may be quite huge and it may take a while
both finding a counterexample or proving correctness.

Moreover, the correctness result and the algorithm assume that the words to
be tested are chosen according to a random distribution that somehow also has
to take into account the RNN as well as the property automaton.

It has been reported that this method does not work well in practice [25] and
our experiments support these findings.

Automaton Abstraction and Model Checking (AAMC). As model checking is
mainly working for finite-state systems, a straightforward idea would be to
(a) approximate the RNN R by a finite automaton AR such that L(R) ≈ L(AR)
and (b) to check whether L(AR) ⊆ L(A) using model checking. The algorithmic
schema is depicted in Algorithm 2.

Here, we can instantiate Approximation() by the DFA-extraction algorithms
from [17] or [25]. In fact, for approximating an RNN by a finite-state system,
several approaches have been studied in the literature, which can be, roughly,
divided into two approaches: (a) abstraction and (b) automata learning. In the
first approach, the state space of the RNN is mapped to equivalence classes
according to certain predicates. The second approach uses automata-learning
techniques such as Angluin’s L∗. The approach [25] is an intertwined version
combining both ideas.

Therefore, there are different instances of AAMC, varying in the approximation
approach. Note that, for verification as language inclusion, as considered here, it
actually suffices to learn an over-approximation AR such that L(R) ⊂∼ L(AR).

While the approach seems promising at first hand, its correctness has two
glitches. First, the result “Property satisfied” depends on the quality of the ap-
proximation. Second, any returned counterexample w may be spurious: w is a
counterexample with respect to AR satisfying A but may not be a counterexample
for R satisfying A. If w ∈ L(R), then it is indeed a counterexample, but if not,
it is spurious—an indication that the approximation needs to be refined. If the
automaton is obtained using abstraction techniques (such as predicate abstrac-
tion) that guarantee over-approximations, well-known principles like CEGAR [7]
may be used to refine it. In the automata-learning setting, w may be used as a
counterexample for the learning algorithm to improve the approximation. Re-
peating the latter idea suggests an interplay between automata learning and
verification—and this is the idea that we follow in this paper. However, rather
than starting from some approximation with a certain quality that is later refined
according to the RNN and the property, we perform a direct, property-directed
approach.

4 Property-Directed Verification of RNNs

We are now ready to present our algorithm for property-directed verification
(PDV). The underlying idea is to replace the EQ in Angluin’s L∗ algorithm with
a combination of classical model checking and statistical model checking, which

7

are used as an alternative to EQs. This approach, which we call property-directed
verification of RNNs, is outlined as Algorithm 3 and works as follows.

After initialization of L∗ and the corresponding data structure, L∗ automati-
cally generates and asks MQs to the given RNN R until it comes up with a first
hypothesis DFA H (Line 3). In particular, the language L(H) is consistent with
the MQs asked so far.

At an early stage of the algorithm, H is generally small. However, it already
shares some characteristics with R. So it is worth checking, using standard au-
tomata algorithms, whether there is no mismatch yet between H and A, i.e.,
whether L(H) ⊆ L(A) holds (Line 4). Because otherwise (Line 10), a counterex-
ample word w ∈ L(H) \ L(A) is already a candidate for being a misclassified
input for R. If indeed w ∈ L(R), w is mistakenly considered positive by R so
that R violates the specification A. The algorithm then outputs “Counterexample
w” (Line 13). If, on the other hand, R happens to agree with A on a negative
classification of w, then there is a mismatch between R and the hypothesis H
(Line 14). In that case, w is fed back to L∗ to refine H.

Now, let us consider the case that L(H) ⊆ L(A) holds (Line 5). If, in addition,
we can establish L(R) ⊆ L(H), we conclude that L(R) ⊆ L(A) and output
“Property satisfied” (Line 8). This inclusion test (Line 6) relies on statistical
model checking using given parameters ε, γ > 0 (cf. Algorithm 1). If the test
passes, we have some statistical guarantee of correctness of R (cf. Theorem 1).
Otherwise, we obtain a word w ∈ L(R) \ L(H) witnessing a discrepancy between
R and H that will be exploited to refine H (Line 9).

Overall, in the event that the algorithm terminates, we have the following
theorem (with proof in the appendix) that assures the soundness of a returned
counterexample and provides the statistical guarantees on the property satisfac-
tion, depending on the result of the algorithm:

Theorem 2 (Correctness of PDV). Suppose Algorithm 3 terminates, using
SMC for inclusion checking with parameters ε and γ. If it outputs “Counterexample
w”, then w is mistakenly classified by R as positive. If it outputs “Property
satisfied”, then R is ε-approximately correct wrt. A with probability at least 1− γ.

Although we cannot hope that Algorithm 3 will always terminate, we demon-
strate empirically that it is an effective way for the verification of RNNs.

5 Adversarial Robustness Certification

Our method can especially be used for adversarial robustness certification, which
is parameterized by a distance function dist : Σ∗ ×Σ∗ → [0,∞] satisfying, for
all words w1, w2, w3 ∈ Σ∗: (i) dist(w1, w2) = 0 iff w1 = w2, (ii) dist(w1, w2) =
dist(w2, w1), and (iii) dist(w1, w3) ≤ dist(w1, w2)+dist(w2, w3). Popular distance
functions are Hamming distance and Levenshtein distance. The Hamming distance
between w1, w2 ∈ Σ∗ is the number of positions in which w1 differs from w2,
provided |w1| = |w2| (otherwise, the distance is ∞). The Levenshtein distance
(edit distance) between w1 and w2 is the minimal number of operations among

8

substitution, insertion, and deletion that are required to transform w1 into w2.
For L ⊆ Σ∗ and r ∈ N, we let Nr(L) = {w′ ∈ Σ∗ | dist(w,w′) ≤ r for some
w ∈ L} be the r-neighborhood of L. If L is regular and dist is the Hamming
or Levenshtein distance, then Nr(L) is regular (for efficient constructions of
Levenshtein automata when L is a singleton, see [24]).

Let R be an RNN, L ⊆ Σ∗ be a regular language such that L ⊆ L(R),
r ∈ N, and 0 < ε < 1. We call R ε-adversarially robust (wrt. L and r) if
Pr(Nr(L)\L(R)) < ε. Accordingly, every word fromNr(L)\L(R) is an adversarial
example. Thus, checking adversarial robustness amounts to checking the inclusion
L(R) ⊆ Nr(L) through one of the above-mentioned algorithms.

Note that, even when L is a finite set, Nr(L) can be too large for exhaustive
exploration so that PDV, in combination with SMC, is particularly promising,
as we demonstrate in our experimental evaluation.

From the definitions and Theorem 2, we get:

Lemma 1. Suppose Algorithm 3, for input R and a DFA A recognizing Nr(L),
terminates, using SMC for inclusion checking with parameters ε and γ. If it
outputs “Counterexample w”, then w is an adversarial example. Otherwise, R is
ε-adversarially robust (wrt. L and r) with probability at least 1− γ.

Similarly, we can handle the case where L ∩ L(R) = ∅. Then, R is ε-
adversarially robust if Pr(L(R)∩Nr(L)) < ε, and every word in L(R)∩Nr(L) is
an adversarial example. Overall, this case amounts to checking L(R) ⊆ Nr(L).

6 Experimental Evaluation

We now present an experimental evaluation of the three model-checking algorithms
SMC, AAMC, and PDV, and provide a comparison of their performance on
LSTM networks [11] (a variant of RNNs using LSTM units). The algorithms
have been implemented2 in Python 3.6 using PyTorch 19.09 and Numpy library.
The experiments of adversarial robustness certification were run on Macbook
Pro 13 with the macOS. The other experiments were run on NVIDIA DGX-2
with an Ubuntu OS.

Optimization For Equivalence Queries. In [17], the authors implement AAMC
but with an optimization that was originally shown in [2]. This optimization
concerns the number of samples required for checking the equivalence between the
hypothesis and the taught language. This number depends on ε, γ and the number
of previous equivalence queries n and is calculated by 1

ε

(
log 1

γ + log(2)(n+ 1)
)
.

We adopt this optimization in AAMC and PDV as well (Algorithm 2 in Line 1
and Algorithm 3 in Line 6).

2 available at https://github.com/LeaRNNify/Property-directed-verification

9

https://github.com/LeaRNNify/Property-directed-verification

Table 1. Experimental results

Type Avg time (s) Avg len #Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

6.1 Evaluation on Randomly Generated DFAs

Synthetic Benchmarks. To compare the algorithms, we implemented the follow-
ing procedure, which generates a random DFA Arand, an RNN R that learned
L(Arand), and a finite set of specification DFAs: (1) choose a random DFA
Arand = (Q, δ, q0, F), with |Q| ≤ 30, over an alphabet Σ with |Σ| = 5; (2) ran-
domly sample words from Σ∗ as described in Section 2 in order to create a
training set and a test set; (3) train an RNN R with hidden dimension 20|Q|
and 1 + |Q|/10 layers—if the accuracy of R on the training set is larger than
95%, continue, otherwise restart the procedure; (4) choose randomly up to five
sets Fi ⊆ Q \ F to define specification DFAs Ai = (Q, δ, q0, F ∪ Fi). Using this
procedure, we created 30 DFAs/RNNs and 138 specifications.

Experimental Results. Given an RNN R and a specification DFA A, we checked
whether R satisfies A using Algorithms 1–3, i.e., SMC, AAMC, and PDV, with
ε, γ = 5 · 10−4.

Table 1 summarizes the executions of the three algorithms on our 138 random
instances. The columns of the table are as follows: (i) Avg time was counted in
seconds and all the algorithms were timed out after 10 minutes; (ii) Avg len is the
average length of the found counterexamples (if one was found); (iii) #Mistakes
is the number of random instances for which a mistake was found; (iv) Avg MQs
is the average number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the
average number of states of the final DFA is also much smaller: 26 states with
PDV and 319 with AAMC. Furthermore, it asked more than 10 times less MQs
to the RNN. Comparing PDV to SMC, it is 4.5 times faster and the average
length of counterexamples it found is 10 times smaller, even though with a little
fewer mistakes discovered.

Faulty Flows. One of the advantages of extracting DFAs in order to detect
mistakes in a given RNN is the possibility to find not only one mistake but
a “faulty flow”. For example, Figure 1 shows one hypothesis DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN.
The counterexample we found was abcee. One can see that the word abce is
a loop in the DFA. Hence, we can suspect that this could be a “faulty flow”.
Checking the words wn = (abce)ne for n ∈ {1, . . . , 100}, we observed that, for
any n ∈ {1, . . . , 100}, the word wn was in the RNN language but not in the
specification.

To automate the reasoning above, we did the following: Given an RNN R,
a specification A, the extracted DFA H, and the counterexample w: (1) build
the cross product DFA H × A; (2) for every prefix w1 of the counterexample

10

0 1

2 3 4

e

a, c
b, d

a

b, c, d, e
e

b, c, d

a

b

a, c, d, e

a, c

b, d, e

Fig. 1. Faulty Flow in DFA extracted through PDV

w = w1w2, denote by sw1 the state to which the prefix w1 leads in H×A—for
any loop ` starting from sw1

, check if wn = w1`
nw2 is a counterexample for

n ∈ {1, . . . , 100}; (3) if wn is a counterexample for more than 20 times, declare a
“faulty flow”. Using this procedure, we managed to find faulty flows in 81/109 of
the counterexamples that were found by PDV.

6.2 Adversarial Robustness Certification

We also examined PDV for adversarial robustness certification, following the
ideas explained in Section 5, both on synthetic as well as real-world examples.

Synthetic Benchmarks. For a given DFA (representing one of the languages
described below), we randomly sampled words from Σ∗ by using the DFA and
created a training set and a test set. For RNN training, we proceeded like in step
(3) for the benchmarks in Section 6.1. Moreover, for certification, we randomly
sampled 100 positive words and 100 negative words from the test set. For a given
word w, we then let L = {w} and considered Nr(L) where r = 1, . . . , 5.

Given an RNN R, we checked whether R satisfies adversarial robustness
using the certification methods PDV, SMC, and neighborhood-automata gener-
ation SMC (NAG-SMC), with ε, γ = 0.01. In SMC, we randomly modified the
input word within a certain distance to generate words in the neighborhood. In
NAG-SMC, on the other hand, we first generated a neighborhood automaton of
the input word, and sampled words that are accepted by the automaton. Here,
we followed the algorithm by Bernardi and Giménez [5], who introduce a method
for generating a uniformly random word of length n in a given regular language
with mean time bit-complexity O(n).

Figure 2, which is a set of scatter plots, shows the results of the average
time of executing the algorithms on the languages that we describe below. The
x-axis and y-axis are both time in seconds, and each data point represents one
adversarial robustness certification procedure. The length of words are from 50
to 500 and follow the normal distribution.

Simple Regular Ranguages. As a sanity check of our approach, we considered the
following two regular languages and distance functions: L1 = ((a+b)(a+b))∗ (also
called modulo-2 language) with Hamming distance; L2 = c(a+b)∗c with distance
function dist such that dist(w1, w2) is the Hamming distance if w1, w2 ∈ L2

11

0 50 100 150 200

0

50

100

150

200

Time PDV in s

T
im

e
SM

C
in
s

Modulo-2

0 50 100 150 200
Time PDV in s

c(a+ b)∗c

0 50 100 150 200
Time PDV in s

ABP

0 50 100 150 200
Time PDV in s

E-commerce

0 50 100 150 200

0

50

100

150

200

Time PDV in s

T
im

e
N
A
G
-S
M
C

in
s Modulo-2

0 50 100 150 200
Time PDV in s

c(a+ b)∗c

0 50 100 150 200
Time PDV in s

ABP

0 50 100 150 200
Time PDV in s

E-commerce

0 50 100 150 200

0

50

100

150

200

Time SMC in s

T
im

e
N
A
G
-S
M
C

in
s Modulo-2

0 50 100 150 200
Time SMC in s

c(a+ b)∗c

0 50 100 150 200
Time SMC in s

ABP

0 50 100 150 200
Time SMC in s

E-commerce

Fig. 2. Comparison of three algorithms on the regular languages

and |w1| = |w2|, and dist(w1, w2) = ∞ otherwise. The size of the Hamming
neighbourhood will exponentially grow with the distance.

The accuracies of the trained RNNs reached 100%. All three approaches
successfully reported “adversarially robust” for the certified RNNs.

The first two diagrams on the first row of Figure 2 compare the runtimes of
PDV and SMC on the two regular-language datasets, resp., whereas the first two
diagrams on the second row compare the runtimes of PDV and NAG-SMC. We
make two main observations. First, on average, the running time of PDV (avg.
15.70 seconds) is faster than SMC (avg. 24.04 seconds) and NAG-SMC (avg. 32.5
seconds), which shows clearly that combining symbolically checking robustness
on the extracted model and statistical approximation checking is more efficient
than pure statistical approaches. Second, although SMC and NAG-SMC are able
to certify short words (whose length is smaller than 30) faster, when the length of
words is greater, they have to spend more time (which is more than 60 seconds)
for certification. This is because, for short words, statistical approaches can easily
explore the whole neighborhood, but when the neighborhood becomes larger and
larger, this becomes infeasible.

The first two diagrams on the third row of Figure 2 compare the running time
of SMC and NAG-SMC, respectively. In general, SMC is faster than NAG-SMC,
this is mainly because, for sampling random words from the neighborhood,

12

s0r1start

s0r0 s1r0

s1r1

msg0

ack1, dummy
ack0

msg0, dummy

msg1

ack0, dummy

ack1

msg1, dummy

Fig. 3. Automaton for ABP

A

B

C

D

14

10

9

10

12

Fig. 4. Temporal Network for
contact between 4 people

using the algorithm proposed by Bernardi et al. [5] is slower than combining the
random.choice function in the Python library and the corresponding modification.

Real-World Dataset. We used two real-world examples considered by Mayr and
Yovine [17]. The first one is the alternating-bit protocol (ABP) shown in Figure 3.
However, we add a special letter dummy in the alphabet and a self-loop transition
labeled with dummy on every state. We use the number of insertions of the
letter dummy as the distance function. The second example is a variant of an
example from the E-commerce website [19]. There are seven letters in the original
automaton. Similarly, we also add dummy and self-loop transition in every state
(omitted in the figure for simplicity). Again, we use the number of insertions of
dummy as the distance function.

The accuracies of the trained RNNs also reach 100%. For certification, the
three approaches can certify the adversarial robustness for the RNNs as well.

The last two diagrams on the first (resp. second) row of Figure 2 compare
the runtime of PDV and SMC (resp. PDV and NAG-SMC) on the ABP and
the E-commerce dataset. The data points in the first and second row have a
vertical shape. The reason is that the running time of PDV is usually relatively
stable (10–20 seconds), while the running time of SMC and NAG-SMC increases
linearly with the word length.

The last two diagrams on the third row of Figure 2 compare the runtimes of
SMC and NAG-SMC on the two datasets. Here, the data points have a diagonal
shape, but for NAG-SMC, when the word length is long (more than 300), it
usually spends more time than SMC. This is mainly because it is inefficient
to construct the neighborhood automaton and sample random words from the
neighborhood.

6.3 RNNs Identifying Contact Sequences

Contact tracing [14] has proven to be increasingly effective in curbing the spread
of infectious diseases. In particular, analyzing contact sequences—sequences of
individuals who have been in close contact in a certain order—can be crucial
in identifying individuals who might be at risk during an epidemic. We, thus,
look at RNNs which can potentially aid contact tracing by identifying possible
contact sequences. However, in order to deploy such RNNs in practice, one would

13

require them to be verified adequately. One does not want to alert individuals
unnecessarily even if they are safe or overlook individuals who could be at risk.

In a real-world setting, one would obtain contact sequences from contact-
tracing information available from, for instance, contact-tracing apps. However,
such data is often difficult to procure due to privacy issues. Thus, in order to mimic
a real life scenario, we use data available from www.sociopatterns.org, which
contains information about interaction of humans in public places (hospitals,
schools, etc.) presented as temporal networks.

Formally, a temporal network G = (V,E) [12] is a graph structure consisting
of a set of vertices V and a set of labeled edges E, where the labels represent
the timestamp during which the edge was active. Figure 4 is a simple temporal
network, which can be perceived as contact graph of four workers in an office
where edge labels represent the time of meeting between them. A time-respecting
path π ∈ V ∗—a sequence of vertices such that there exists a sequence of edges
with increasing time labels—depicts a contact sequence in such a network. In the
above example, CDAB is a time-respecting path while ABCD is not.

Benchmarks. For our experiment, given a temporal network G, we generated an
RNN R recognizing contact sequences as follows:

1. We created training and test data for the RNN by generating (i) valid time-
respecting paths (of lengths between 5 and 15) using labeled edges from
G, and (ii) invalid time-respecting paths, by considering a valid path and
randomly introducing breaks in the path. The number of time-respecting
paths in the training set is twice the size of the number of labeled edges in
G, while the test set is one-fifth the size of the training set.

2. We trained RNN R with hidden dimension |V | (minimum 100) as well as
b2 + |V |/100c layers on the training data. We considered only those RNNs
that could be trained within 5 hours with high accuracy (avg. 99%) on the
test data.

3. We used a DFA that accepts all possible paths (disregarding the time labels)
in the network as the specification, which would allow us to check whether
the RNN learned unwanted edges between vertices.

Using this process, from the seven temporal networks, we generated seven RNNs
and seven specification DFAs. We ran SMC, PDV, and AAMC on the generated
RNNs, using the same parameters as used for the random instances.

Results. Table 2 notes the length of counterexample, the extracted DFA size (only
for PDV and AAMC), and the running time of the algorithms. We make three
main observations. First, the counterexamples obtained by PDV and AAMC
(avg. length 2), are much more succinct than those by SMC (avg. length 13.1).
Small counterexamples help in identifying the underlying error in the RNN, while
long and random counterexamples provide much less insight. For example, from
the counterexamples obtained from PDV and AAMC, we learned that the RNN
overlooked certain edges or identified wrong edges. This result highlights the
demerit of SMC, which has also been observed by [25]. Second, the running time

14

www.sociopatterns.org

Table 2. Results of model-checking algorithm on RNN identifying contact sequences

Counter- Extracted
Case Alg. example len. DFA size Time (s)

Across SMC 3 0.3
Kenyan AAMC 2 328 624.76

Household PDV 2 2 0.22

SMC 2 0.23
Workplace AAMC 2 111 604.99

PDV 2 2 0.77

SMC 5 0.33
Highschool AAMC 2 91 627.30

2011 PDV 2 2 0.19

SMC 7 0.24
Hospital AAMC 2 36 614.76

PDV 2 2 0.006

Counter- Extracted
Case Alg. example len. DFA size Time (s)

Within SMC 2 0.28
Kenyan AAMC 2 178 620.30

Household PDV 2 2 0.27

SMC 71 1.51
Conference AAMC 2 38 876.19

PDV 2 2 0.33

SMC 3 0.48
Workplace AAMC 2 87 621.44

2015 PDV 2 2 1.11

of SMC and PDV (avg. 0.48 seconds and 0.41 seconds) is comparable, while
that of AAMC is prohibitively large (avg. 655.68 seconds), indicating that model
checking on small and rough abstractions of the RNN produces superior results.
Third, the extracted DFA size, in case of AAMC (avg. size 124.14), is always
larger compared to PDV (avg. size 2), indicating that RNNs are quite difficult
to be approximated by small DFAs and this slows down the model-checking
process as well. Again, our experiments confirm that PDV produces succinct
counterexamples reasonably fast.

7 Conclusion

We proposed property-directed verification (PDV) as a new verification method
for formally verifying RNNs with respect to regular specifications, with adver-
sarial robustness certification as one important application. It is straightforward
to extend our ideas to the setting of Moore/Mealy machines supporting the
setting of richer classes of RNN classifiers, but this is left as part of future work.
Another future work is to investigate the applicability of our approach for RNNs
representing more expressive languages, such as context-free ones. Finally, we
plan to extend the PDV algorithm for the formal verification of RNN-based agent
environment systems, and to compare it with the existing results.

References

1. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of
rnn-based neural agent-environment systems. In: Proceedings of AAAI 2019. pp.
6006–6013. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33016006

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Ayache, S., Eyraud, R., Goudian, N.: Explaining black boxes on sequential data
using weighted automata. In: Proceedings of ICGI 2018. Proceedings of Machine
Learning Research, vol. 93, pp. 81–103. PMLR (2018)

15

https://doi.org/10.1609/aaai.v33i01.33016006

4. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
5. Bernardi, O., Giménez, O.: A linear algorithm for the random sampling from regular

languages. Algorithmica 62(1-2), 130–145 (2012)
6. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,

H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proc. EMNLP. pp. 1724–1734. ACL (2014)

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proceedings of CAV 2000. Lecture Notes in Computer
Science, vol. 1855, pp. 154–169. Springer (2000)

8. Du, X., Li, Y., Xie, X., Ma, L., Liu, Y., Zhao, J.: Marble: Model-based robustness
analysis of stateful deep learning systems. In: ASE 2020. pp. 423–435. IEEE (2020)

9. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Proceedings of CAV 2020, Part I. Lecture Notes in
Computer Science, vol. 12224, pp. 43–65. Springer (2020)

10. Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Proceedings of IJCAI 2015. pp. 1558–1564. AAAI Press (2015)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Holme, P.: Temporal networks. In: Encyclopedia of Social Network Analysis and
Mining, pp. 2119–2129. Springer (2014)

13. Jacoby, Y., Barrett, C.W., Katz, G.: Verifying recurrent neural networks using
invariant inference. CoRR abs/2004.02462 (2020)

14. Keck, C.: Principles of Public Health Practice. Cengage Learning (2002)
15. Kwiatkowska, M.Z.: Safety Verification for Deep Neural Networks with Provable

Guarantees (Invited Paper). In: Proceedings of CONCUR 2019. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 140, pp. 1:1–1:5. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik (2019)

16. Mayr, F., Visca, R., Yovine, S.: On-the-fly black-box probably approximately correct
checking of recurrent neural networks. In: Proceedings of CD-MAKE 2020. Lecture
Notes in Computer Science, vol. 12279, pp. 343–363. Springer (2020)

17. Mayr, F., Yovine, S.: Regular inference on artificial neural networks. In: Holzinger,
A., Kieseberg, P., Tjoa, A.M., Weippl, E.R. (eds.) Proceedings of CD-MAKE 2018.
LNCS, vol. 11015, pp. 350–369. Springer (2018)

18. Mayr, F., Yovine, S., Visca, R.: Property checking with interpretable error charac-
terization for recurrent neural networks. Mach. Learn. Knowl. Extr. 3(1), 205–227
(2021)

19. Merten, M.: Active automata learning for real life applications. Ph.D. thesis,
Dortmund University of Technology (2013)

20. Okudono, T., Waga, M., Sekiyama, T., Hasuo, I.: Weighted automata extraction
from recurrent neural networks via regression on state spaces. In: Proceedings of
AAAI 2020. pp. 5306–5314. AAAI Press (2020)

21. Omlin, C.W., Giles, C.L.: Extraction of rules from discrete-time recurrent neural
networks. Neural Networks 9(1), 41–52 (1996)

22. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. Journal of Automata,
Languages and Combinatorics 7(2), 225–246 (2002)

23. Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A.M., Vechev, M.T.:
Fast and effective robustness certification for recurrent neural networks. CoRR
abs/2005.13300 (2020)

24. Schulz, K.U., Mihov, S.: Fast string correction with levenshtein automata. Int. J.
Document Anal. Recognit. 5(1), 67–85 (2002)

16

25. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neu-
ral networks using queries and counterexamples. In: Proceedings of ICML 2018.
Proceedings of Machine Learning Research, vol. 80, pp. 5244–5253. PMLR (2018)

17

	Property-Directed Verification and Robustness Certification of Recurrent Neural Networks

